“而伴随着风机的大型化和性能的提升,也随之给润滑带来更大的压力,润滑油必须承受更高的运行温度和更重的负载。”科德宝集团上述人士表示。
郑州奥特科技公司相关负责人告诉记者,风电集中润滑系统在目前实际应用过程中,暴露出一些亟待解决的问题:比如,风电场内所有风电集中润滑系统均处于独立工作状态,不便于集中监控管理;传统集中润滑系统“定时定量”的润滑方式,不能满足系统内各个润滑部位的差异化需求,造成有的部位润滑不良,有的部位油脂过量;集中润滑系统处于模糊不可控工作状态,润滑状态异常不易判断,检修难度高,故障发现时往往已造成极大损失;集中润滑系统个别润滑部位发生堵塞或泄露,直接导致其它润滑部位得不到有效润滑;润滑泵泵送性能差,不能泵送高粘稠度油脂,在高寒地区低温环境下更为明显;废油回收不彻底,污染严重,操作低效,且存在安全隐患等。
然而,针对风电润滑环节存在的这些问题,绝不仅仅是提供润滑油如此简单,而是要提供一整套的润滑管理方案和服务。
业内人士告诉记者,积极的维护策略可以帮助维护人员实时监控润滑油和齿轮箱等设备的运行状况,并及早排除隐患。客户不仅仅需要润滑产品,更需要润滑解决方案。
沈阳奥吉娜集团公司董事长魏国平认为,如果把风电机组故障比作一头牛,主齿轮箱的故障就是牛鼻子,牵住牛鼻子,一切问题就迎刃而解。
奥吉娜集团目前仅占据风电润滑油市场约2%的份额,其目标是占据整个风电润滑油市场50%的份额。
为了解决润滑环节出现的种种问题,也有多家国内企业推出包括油品质量检测服务、机械换油滤油服务、油品及备件供应服务、废油处理服务、油品在线监测系统、油液精滤系统以及齿轮箱冷却系统改造服务等内容的一站式风电机组润滑管理服务,试图给出全方位解决方案。而在业内看来,各家服务目前缺乏统一标准,服务水平也参差不齐。
应充分利用大数据
保障风机的可靠运行,除依靠高品质润滑油外,还需要创新技术手段。业内认为,大数据时代来临将彻底改变对风机润滑管理的传统模式。
据介绍,大数据使得数据安全、数据分析、数据挖掘等专业化处理所产生的各种数据价值翻番,甚至在某些方面颠覆了传统的业务模式。在进行风机润滑管理时,可以实现分析处理与之相关的所有数据,而不再依赖于随机采样,这将大大提升润滑管理的精准度和实时性。