6、永磁特种电机
控制电机和特种电机的种类很多,其共同的发展趋势之一是永磁化,以高性能的永磁体励磁逐步取代电励磁。
由于稀土永磁具有高剩磁密度、高矫顽力和高磁能积的特点,可以容许所制成的电机具有较大的气隙长度和气隙密度,因而在永磁体安放和磁路结构设计上有很大灵活性,可以根据使用场合,特别是汽车、计算机和航天工程的需要,制成与传统电机不同的结构形状和尺寸,例如盘式电机、无槽电机等。这既可以进一步减少电机的质量和转动惯量,提高电机的反应灵敏度;又可以减少电机转矩的脉动,增加运行的平稳性;还可以简化电机的结构和工艺。因而在计算机外围设备、办公设备和要求精度定位控制的场合得到广泛应用。
计算机磁盘驱动器中用以驱动读写磁头作往复运动的动圈式直线电动机一一音圈电动机需要高性能磁体,以保证足够的灵敏度,缩小体积和减轻质量。钕铁硼永磁正好能满足这一要求。20世纪60年代采用铁氧体永磁研制的是14in磁盘驱动器用音圈电动机。自采用钕铁硼永磁后,驱动器尺寸不断缩小,存取时间明显减少,存储容量增加。1984年磁盘驱动器缩小到以5.25in盘为主;进入20世纪90年代,3.5in磁盘驱动器迅速增长,成为主体。今后几年内2.5in和1.8in磁盘驱动器将大为发展。因此,日、美等国钕铁硼永磁销售量的一半左右用于制造音圈电动机。
此外,在步进电动机、开关磁阻电动、低速同步电动机等特种电机中增加钕铁硼永磁励磁后,其技术经济性能、动态响应特性都有明显提高与改进。
四、永磁电机的研究推动了电机学科的发展
在永磁电机设计、制造和应用过程中,需要注意对以下几个问题的研究分析。
1、磁路结构和设计计算
为了充分发挥各种永磁材料的磁性能,特别是稀土永磁的优异磁性能,制造出性价比高的永磁电机,就不能简单套用传统的永磁电机或电励磁电机的结构和设计计算方法,必须建立新的设计概念,重新分析和改进磁路结构。随着计算机硬件和软件技术的迅猛发展,以及电磁场数值计算、优化设计和仿真技术等现代化设计方法的不断完善,经过电机学术界和工程界的共同努力,现已在永磁电机的设计理论、计算方法、结构工艺和控制技术等方面取得了突破性进展,形成了以电磁场数值计算和等效磁路解析求解相结合的一整套分析研究方法和计算机辅助分析、设计软件,并正在不断完善中。
2、控制问题
永磁电机制成后不需外界能量即可维持其磁场,但也造成从外部调节、控制其磁场极为困难。永磁发电机难以从外部调节其输出电压和功率因数,永磁直流电动机不能再用改变励磁的办法来调节其转速。这些使永磁电机的应用范围受到了限制。但是,随着MOSFET、IGBT等电力电子器件和控制技术的迅猛发展,大多数永磁电机在应用中,可以不必进行磁场控制而只进行电枢控制。设计时需要把稀土永磁材料、电力电子器件和微机控制三项新技术结合起来,使永磁电机在崭新的工况下运行。
3、不可逆退磁问题
如果设计或使用不当,永磁电机在过高(钕铁硼永磁)或过低(铁氧体永磁)温度时,在冲击电流产生的电枢反应作用下,或在剧烈的机械震动时有可能产生不可逆退磁,或叫失磁,使电机性能降低,甚至无法使用。因而,既要研究开发适于电机制造厂使用的检查永磁材料热稳定性的方法和装置,又要分析各种不同结构形式的抗去磁能力,以便在设计和制造时,采用相应措施保证永磁电机不失磁。
4、成本问题
铁氧体永磁电机,特别是微型永磁直流电动机,由于结构工艺简单、质量减轻,总成本一般比电励磁电机低,因而得到了极为广泛的应用。由于稀土永磁目前价格还比较贵,稀土永磁电机的成本一般比电励磁电机高,这需要用它的高性能和运行费用的节省来补偿。在某些场合,例如计算机磁盘驱动器的音圈电动机,采用钕铁硼永磁后性能提高,体积质量显著减小,总成本反而降低。在设计时既需根据具体使用场合和要求,进行性能、价格的比较后决定取舍,又要进行结构工艺的创新和设计优化以降低成本。
五、稀土永磁电机的发展趋势
我国稀土资源丰富,稀土矿的储藏量居世界首位。稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平,充分发挥我国稀土资源丰富的优势,大力研究和推广应用以稀土永磁电机为代表的各种永磁电机,对加快实现我国全面进入小康社会具有重要的意义。
稀土永磁电机正向大功率化(高转速、高转矩)、高功能化和微型化方向发展,不断扩展新的电机品种和应用领域,应用前景非常乐观。为了满足需要,稀土永磁电机的设计和制造工艺尚需不断地进行创新,电磁结构将更为复杂,计算结构将更为精确,制造工艺更为先进适用。这些复杂问题需要应用多学科理论和系统工程进行优化设计,提高性价比,促进电机等学科和行业进一步发展。