当前位置: 东方风力发电网>谈技术 >风电叶片 > 大型风轮叶片设计技术的现状与发展趋势

大型风轮叶片设计技术的现状与发展趋势

2009-01-17 来源:李军向 薛忠民 王继辉 冯宾春 浏览数:7178

   在过去的10多年中,水平轴风机叶片翼型通常选择NACA系列的航空翼型,比如NACA44XX,NA-CA23XX,NACA63XX及NASA LS(1)等。这些翼型对前缘粗糙度非常敏感,一旦前缘由于污染变得粗糙,会导致翼型性能大幅度下降,年输出功率损失最高达30%[3]。在认识到航空翼型不太适合于风机叶片后,80年代中期后,风电发达国家开始对叶片专用翼型进行研究,并成功开发出风电叶片专用翼型系列,比如美国Seri和NREL系列、丹麦RISO-A系列、瑞典FFA-W系列和荷兰DU系列。这些翼型各有优势,Seri系列对翼型表面粗糙度敏感性低;RISO-A系列在接近失速时具有良好的失速性能且对前缘粗糙度敏感性低;FFA-W系列具有良好的后失速性能。丹麦LM公司已在大型风机叶片上采用瑞典FFA-W翼型,风机专用翼型将会在风机叶片设计中广泛应用。表1为对NREL翼型系列性能提高[3]的估算。

 
    目前叶片外形的设计理论有好几种,都是在机翼气动理论基础上发展起来的。第一种外形设计理论是按照贝茨理论得到的简化设计方法,该方法是假设风力机是按照贝茨公式的最佳条件运行的,完全没有考虑涡流损失等,设计出来的风轮效率不超过40%。后来一些著名的气动学家相继建立了各自的叶片气动理论。Schmitz理论考虑了叶片周向涡流损失,设计结果相对准确一些。Glauert理论考虑了风轮后涡流流动,但忽略了叶片翼型阻力和叶稍损失的影响,对叶片外形影响较小,对风轮效率影响却较大。Wilson在Glauert理论基础上作了改进,研究了叶稍损失和升阻比对叶片最佳性能的影响,并且研究了风轮在非设计工况下的性能,是目前最常用的设计理论。
2.2结构设计
    目前大型叶片的结构都为蒙皮主梁形式,如图1所示为典型的叶片构造形式[4]。蒙皮主要由双轴复合材料层增强,提供气动外形并承担大部分剪切载荷。后缘空腔较宽,采用夹芯结构,提高其抗失稳能力,这与夹芯结构大量在汽车上应用类似[5]。主梁主要为单向复合材料层增强,是叶片的主要承载结构。腹板为夹芯结构,对主梁起到支撑作用。
    叶片结构设计应依据相关设计规范。目前叶片结构设计规范主要建立在IEC国际标准和德国GL标准基础上,要求结构满足静力强度、疲劳强度和叶尖挠度要求。复合材料叶片各铺层是交错铺放的,实际初步设计时,将所有双轴布视为一层,所有单轴布视为一层,这样做对结构强度和性能影响不大[4]。叶片结构铺层是分段设计,各段厚度都不一致,应对厚度进行连续化处理,最终设计的各铺层厚度还应为各单层厚度的整数倍。

【延伸阅读】

标签:

阅读上文 >> 复合材料风电叶片的发展现状及若干问题的对策
阅读下文 >> 水平轴风力机叶片的逆向设计与分析

版权与免责声明:
凡注明稿件来源的内容均为转载稿或由企业用户注册发布,本网转载出于传递更多信息的目的,如转载稿涉及版权问题,请作者联系我们,同时对于用户评论等信息,本网并不意味着赞同其观点或证实其内容的真实性;


本文地址:http://eastwp.net/tech/show.php?itemid=105&page=2

转载本站原创文章请注明来源:东方风力发电网

按分类浏览

点击排行

图文推荐

推荐谈技术