经过实际运行状态下的烟雾实验,发现该型机组机舱内的气体循环通路大致为:外界空气由发电机尾部的冷却风扇抽入,气流到达机舱中部刹车罩上方时出现滞留现象,在刹车罩上方形成一个高压区,然后气流向上行走,向机舱后部折返,通过机舱后部通风口排出。在齿轮箱周围的空气并没有形成明显的空气对流。因此,风机在额定功率附近工作时,机舱温度较高。
针对这一现象,并考虑到改造工作的成本,运行人员采用了第二种方案,在机舱正面加装了两扇20×20cm的通风窗。经作烟雾试验表明,改进后外界空气直接由机舱正面吹入,进入机舱后将齿轮箱附近的热空气推向后方,通过机舱后部的通风口排出,不但直接对齿轮箱箱体进行了冷却,而且加强了机舱内的空气流动,降低了齿轮箱工作的环境温度。(如图所示)
加装通风窗后,运行人员对上述机组在典型工况下的运行数据进行了收集整理,经过对比分析可看出:
1#机组在加装通风窗后,在高风速满发工作状态下,齿轮箱油温度降低了约2℃左右,机舱内的温度未采集;
2#机组在加装通风窗后,在高风速满发工作状态下,齿轮箱油温度降低了约4℃左右,机舱内的温度未采集;
3#机组在加装通风窗后,在高风速满发工作状态下,齿轮箱油温度降低了约6.8℃左右,机舱内的温度降低了约14℃左右;
该项工作结束后上述三台机组的齿轮箱工作温度都有所下降,基本未出现齿轮油温过热导致的停机现象,达到了预期的效果。
下图即为满发工况下,风电机组齿轮箱及机舱温度的对比:
随后,运行人员又在类似机型上进行了增加散热器片数的实验工作,经过近半年的观察对比,发现该机组在正常满发状态下,齿轮油温度比同型机组降低了5℃左右,效果也比较理想。下一步计划对个别已加装通风窗但温度仍略有偏高的机组再增加散热器片数,力争将齿轮箱的工作温度控制在一个较为理想的范围之内,为齿轮箱的安全可靠运行创造良好的条件。
5.不同结构类型齿轮箱运行中的技术状态分析比较