下面这四张图我们分别研究了参数的系数和改变过渡层的高度所对模型的模拟结果带来的影响。在这里我们可以看到如果说当我们改变这个拖拽力系数的时候,那么无论是风速的过限,还是说湍流强度的过限,实际上都是发生这种比较明显的一种变化,基本上是一个这种平移的效果。那么相对应的而言,针对这种改变过渡层高度的变化,我们发现其实这个风流主要是在森林的上方有一个改变,也就是说过渡层的高度实际上仅仅影响森林上方的模拟的结果,对森林内部没有太多的影响。
下面我们看到一个工作是森林模型的矫正工作,这个矫正工作实际上对于所有的以模拟方式来给结果的软件来说非常重要的。因为这种矫正实际上相当于我们找到了一个俯视的方式来进行应用。我们参考了欧洲标准中一个标准,叫做EC1,这个标准在欧洲做建筑物的风载和计算里面所参考的通用的标准,这个标准里面是基于大量的实测的观测数据,统计出来的平均风速和湍流强度,随着高度变化的函数。这个函数当然是根据地表的粗糙度给出的。这样的矫正工作的意义是使得相当于软件模拟得到的结果。在平坦的地形上和标准上的结果是一致的。这是这个软件被更多的,比如说像建筑设计上或者是其他的分工程的研究所接受的前提。
这个矫正工作里面我们实际上考虑到了刚才所提到的参数。包括了树高和树高度的比值,包括后面看到的过渡层的高度进行的比较,在矫正的过程中我们都进行了考虑,但是矫正工作的细节比较繁琐,我们最后会给出一个矫正的结果。这个矫正的结果里相当于我们对森林系数里面打三个高度,一个是树高度的比值,一个是过渡层的高度,还有是森林的密度,还有拖拽力的系数,这三个参数我们分别针对与原始的参数进行了新的更加符合标准的参数。在右边的话我们可以看到在粗糙度等于一的情况下,不同的参数配制所获得的模拟结果,以及EC1这个标准所给出的结果之间的比较。我们会看到在这种新参数的前提下,无论是风速还是说湍流强度实际上在误差的比较中都比原有的模型有了很大的改进。
所以说也是基于这样的一个矫正的工作,我们在新版本的WT的软件里面在森林模型的设置里面采用了这样一个最新的结果。最后我简单的介绍一下实际验证的案例,因为之前的研究,包括我们做的模型的介绍。包括我们做的参数的影响的介绍和矫正,实际上都是根据平坦地形上的模拟来进行实现的,因为我们实际上在矫正过程中所参考的标准是平坦地面上给出的。
下面我们看一下在一个真实的案例里面,经过我们矫正的结果是否能给出一个与实际的结果,这样一个实力,这是一个法国北部的真实的风电场去进行的。我简单介绍一下这个项目的背景包括我们模拟使用的参数。在这个项目做研究的时候,我们有一个高分辨率的粗糙度的地图。这在场区的粗糙度的变化是比较复杂的,树林的高度,从四米到三十米不等,是一个非均匀的分布。同时这个场区的地形倒不是说非常复杂,它的最大落差是160米左右,这个项目里面主要是想验证森林的影响,而不是地形的影响。
那么在模拟计算方面,我们使用了网格的分辨率仍然是水平方向25米,垂直方向四米。我在模拟上进行了假设,所有在模拟计算里边我们所使用的重叠是按照中性的重叠给出的。我们对实测的数据进行了过滤。
下面是我们看到的常去的真实的森林覆盖的清杂,左侧是谷歌提供的卫星照片,右侧是我们使用的高分辨率的图。我简单提一下我们验证过程中如何对数据进行处理,因为我们之前说过,我们在模拟的过程中采用的是中性的大气稳定度的条件进行模拟的。实际上我们在这样的模拟的假设条件下,我们也需要使实际的数据进行相应的过滤,才能使我们的模拟条件有一致的对应性。这样的话我们做了一个强风的筛选。这个强风的定义实际上是我们可以在这边做出风切片指数,或者是做出湍流强度,随风度变化的区县,当风切片指数和湍流强度不随风速进行变化的时候,这个地方我们可以定义成强风的预值,这个地方我们把七米每秒左右作为一个强风状态的预值,这个以上的样本因为风速比较大,基本上不会受到大气稳定度的影响。
换句话说,可以认为强风状态的样本里面他们都是属于一个双性重叠的分布。右边这张表格我们给出了在各个不同的方向山区上我们所获得的这个强风样本的数量。那么我们在最后的对比里面实际上采取了强风样本数量比较多的山区所形成的对比。因为样本数量越多的话有助于消除,尽量的减少实测数据的统计所带来的误差。