风速计及风向标:用于测量风速及风向。
风电机发电机:风电机发电机将机械能转化为电能。风电机上的发电机与你通常看到的,电网上的发电设备相比,有点不同。原因是,发电机需要在波动的机械能条件下运转。
输出电压
大型风电机(100-150千瓦)通常产生690伏特的三相交流电。然后电流通过风电机旁的变压器(或在塔内),电压被提高至一万至三万伏,这取决于当地电网的标准。
大型制造商可以提供50赫兹风电机类型(用于世界大部分的电网),或60赫兹类型(用于美国电网)。
冷却系统
发电机在运转时需要冷却。在大部分风电机上,发电机被放置在管内,并使用大型风扇来空冷;一部分制造商采用水冷。水冷发电机更加小巧,而且电效高,但这种方式需要在机舱内设置散热器,来消除液体冷却系统产生的热量。
启动及停止发电机
如果你通过弹开一个普通开关,将大型风电机发电机与电网连接或解开,你很可能会损毁发电机、齿轮箱及邻近电网。
发电机电网的设计
风电机可以使用同步或异步发电机,并直接或非直接地将发电机连接在电网上。直接电网连接指的是将发电机直接连接在交流电网上。非直接电网连接指的是,风电机的电流通过一系列电力设备,经调节与电网匹配。采用异步发电机,这个调节过程自动完成。
转子叶片
转子叶片轮廓(横切面)
风电机转子叶片看起来像航行器的机翼。实际上,转子叶片设计师通常将叶片最远端的部分的横切面设计得类似于正统飞机的机翼。但是叶片内端的厚轮廓,通常是专门为风电机设计的。为转子叶片选择轮廓涉及很多折衷的方面,诸如可靠的运转与延时特性。叶片的轮廓设计,即使在表面有污垢时,叶片也可以运转良好。
转子叶片的材质
大型风电机上的大部分转子叶片用玻璃纤维强化塑料(GRP)制造。采用碳纤维或芳族聚酰胺作为强化材料是另外一种选择,但这种叶片对大型风电机是不经济的。木材、环氧木材、或环氧木纤维合成物目前还没有在转子叶片市场出现,尽管目前在这一领域已经有了发展。钢及铝合金分别存在重量及金属疲劳等问题,他们目前只用在小型风电机上。
风电机齿轮箱
为什么要使用齿轮箱?
风电机转子旋转产生的能量,通过主轴、齿轮箱及高速轴传送到发电机。
为什么要使用齿轮箱?为什么我们不能通过主轴直接驱动发电机?
如果我们使用普通发电机,并使用两个、四个或六个电极直接连接在50赫兹交流三相电网上,我们将不得不使用转速为1000至3000转每分钟的风电机。对于43米转子直径的风电机,这意味着转子末端的速度比声速的两倍还要高。另外一种可能性是建造一个带许多电极的交流发电机。但如果你要将发电机直接连在电网上,你需要使用200个电极的发电机,来获得30转每分钟的转速。另外一个问题是,发电机转子的质量需要与转矩大小成比例。因此直接驱动的发电机会非常重。
更低的转矩,更高的速度
使用齿轮箱,你可以将风电机转子上的较低转速、较高转矩,转换为用于发电机上的较高转速、较低转矩。风电机上的齿轮箱,通常在转子及发电机转速之间具有单一的齿轮比。对于600千瓦或750千瓦机器,齿轮比大约为1比50。
下图显示了用于风电机的1.5兆瓦的齿轮箱。这个齿轮箱有些不同寻常,因为在高速点的两个发电机上安装有法兰。右侧安装在发电机下的橙黄色配件,是液压驱动的紧急盘状刹车。在背景处你可以看到用于1.5MW风电机的机舱的下半部分
风电机偏航装置