现在的大型风力涡轮机通常采用主动功率控制系统来调节转子叶片处于其纵向轴内(节距控制)。通过调节与转子平面有关的叶片角度,可能控制的不仅仅是发电机功率。在较高风速下,转子叶片可以转子快速停止的方式扭转。小功率电气驱动器通常用于这种用途。在某些逆变器内,小型和PCB安装电流传感器应用非常广泛。这些传感器是转换器闭环控制的一部分,因此可以快速反应。当与发电机的智能功率控制同时使用时,可以确保在风能涡轮机(WET)启动之后在一个很宽的风速范围内为电网提供持续功率,直到涡轮机在上限风速时停机为止。
偏航控制
转子一直与风向垂直很重要。有两个原因,一是可以确保风流经过最大转子面积,因而从风中获得最多能量;第二个原因是通过确保转子叶片在每次旋转中不会来回伸缩,从而避免转子叶片的非均匀负载。
商用大型风力涡轮机通常称为迎风机,即转子面对塔前面的风,但这是一个不稳定的状态。因此,整流罩和转子必须通过电动机的作用积极地转到风的方向。此外,制动器还可用于确保整流罩不会由于风向小的短时间改变而发生扭转。为了对驱动器进行最佳定位,各个转换器内的传感器对电流进行连续测量。电路控制器的质量和反应时间最终由电流传感器的设计和性能而确定。这就是具有小电流额定值的闭环电流传感器应用在这种场合的原因。
除了具有极好的线性度以及因此的极好精确度之外,闭环电流传感器本身还具有高带宽以及快速的反应时间等优点。闭环电流传感器的原理在[3]中予以描述。
图4
下一个问题是从风中获得电能并将其送进主网。风力涡轮机制造商已经开发了用于该种用途的具有竞争力的系统。实际上,每台风力涡轮机都配有一台异步发电机或一台同步发电机。
异步发电机和电网耦合
典型“丹麦概念”描述了一种风力涡轮机,这种风力涡轮机包括一个具有三片转子叶片的失速控制转子、一个变速箱、一台配有鼠笼式转子的极切换异步发电机和一个直接主网耦合器。直接电网耦合器产生一个在超同步滑动区域具有几近恒定运行速度的“恒速”系统。转子速度可以通过滑动控制在一个狭窄的范围内调节,或是通过切换发电机的极性在一个较宽的范围内调节。变速箱使转子旋转与发电机速度相适应。设备需要电网提供动力来逐步产生旋转磁场。为了对在发电机与电网耦合时所产生的浪涌电流进行限制,在启动过程中在发电机和电网之间采用软启动器。这种直接电网耦合方法由于某些技术缺陷而不再用于大型风力涡轮机(如通过用于功率调整的切换动作在电网连接处的补偿过程)。
双馈感应发电机
现在大多数的风力涡轮机都使用一种经过修正的“丹麦概念”,在这种概念中,一台双馈异步机器作为发电机。