夹层结构试件的铺层结构形式与通常的船艇结构相同,制造工艺也是采用树脂注射工艺,一步完成。将干纤维多轴向织物直接铺设在夹层结构芯材的上下两侧,然后铺放树脂导流介质材料,并用真空袋密封,抽真空,通过注射口注射树脂,两侧纤维同时浸润,室温制造、固化。使用圆形金刚砂锯将构件切割成需要的尺寸。试件的结合尺寸和所用材料在表1和2中列出。在表7中列出了这几种芯材的力学性能。
剪切试验
首先利用静力加载剪切试验得到疲劳试验的加载范围。在22℃的室温环境下,按照ASTM C393-62,使用Schenk PSA40 液压试验机,每组测试3个相同的试件,加载速度为 6 mm/min 。
试件
瑞典斯德哥尔摩皇家理工大学对X-PVC、PEI和PMI泡沫夹层结构梁做了四点疲劳试验,分别得出三种不同结构芯材发生剪切疲劳破坏的载荷、变形、剪切强度和S/N曲线。设定合适的加载幅度,在1×103-5×106次循环加载条件下,如果夹层结构梁发生疲劳破坏,就可以得到相应的疲劳破坏载荷。对于经过5×106循环以后对未发生破坏的试件,通过静力方法(ASTM C393-62)测量其剩余剪切强度 夹层结构试件的铺层结构形式与通常的船艇结构相同,制造工艺也是采用树脂注射工艺,一步完成。将干纤维多轴向织物直接铺设在夹层结构芯材的上下两侧,然后铺放树脂导流介质材料,并用真空袋密封,抽真空,通过注射口注射树脂,两侧纤维同时浸润,室温制造、固化。使用圆形金刚砂锯将构件切割成需要的尺寸。试件的结合尺寸和所用材料在表1和2中列出。在表7中列出了这几种芯材的力学性能。
疲劳试验
试验研究的目的是在载荷振幅为常量时,比较这几种泡沫材料的疲劳性能。试验加载比率R=0.1,每组至少六个试件。
疲劳试验在一台40 kN的Schenk通用液压侍服试验机上进行。所有疲劳试验都使用了一种特殊的控制回路——间接加载控制系统。加载通过位移控制加载,记录下加载反应,在经过一定次数的循环以后,将载荷变化的平均值返回给位移控制系统。
通过疲劳试验得出标准的S/N曲线,如图3所示。Y轴是PMI 51 S 疲劳破坏载荷和静力载荷的比值,X轴为加载循环次数(n)的对数。加载循环次数的最大值为5×106,部分试件在经过5×106次循环加载试验后,没有发生破坏。图7为PMI 51 S 在 P/Pcrit=65%,n=1×106 次循环加载条件下,发生剪切疲劳破坏的照片。图4 -6为X-PVC 和 PEI的S/N值。表4 是5×106 次加载循环条件下的疲劳破坏剪切强度值。
剩余剪切强度
在经过5×106次加载循环,如果试样未发生破坏,疲劳试验中止,转而进行静力加载试验,试验过程和试验方法和原先的静力试验相同。试验结果在表5中列出。
结论
进行的一系列试验表明,PMI泡沫能够承受相当于58% 的静力破坏载荷的疲劳载荷,X-PVC 能承受相当于33%的静力破坏载荷的疲劳载荷,PEI 泡沫只有25%。PMI 泡沫芯材的抗疲劳性能最好。(参见表4。)
疲劳试验的剪切破坏载荷和剪切破坏强度与静力情况相比,差异很小。这表明PMI泡沫材料在高动态载荷下的夹层结构中具有良好的可靠性。
经过5×106次循环,试样未发生破坏的情况下,在随后的静力加载破坏试验中,发现PVC和PEI泡沫的静力加载剪切破坏变形降低最多达57%。这两种泡沫芯材都失去了原有的延性,这需要进一步的研究来解释。
虽然经过了疲劳试验,但是PMI泡沫芯材的剪切破坏变形终保持同一个数量级。
多年来的实践证明夹层结构PMI泡沫芯材材料最适合于高动力载荷的应用领域,例如铁路机车、高速船舶、航天航空和风机叶片等。一系列试验的结果也证明了这一点。
建议进行进一步的深入研究,以建立丰富的数据库,使设计人员能够针对自己特殊的应用选择最优的泡沫材料。
参考文献:
[1] Annual Book of the ASTM Standards, American Society for Testing and Materials, Philadelphia, PA.
[2] Olsson K.-A. and Lonno A., “Test Procedure For Foam Core Materials”, Proceeding of First International Conference on Sandwich Construction, Eds. K.-A. Olsson and R. P. Reichard, EMAS, Solihull, UK, pp. 293-318, 1989.
[3] Burman M. and Zenkert D., “ Fatigue of Foam Core Sandwich Beams, Part 1: Undamaged Specimens” International Journal of Fatigue, Vol. 19, No. 7, pp. 551-561, 1997.
[4] Burman M. and Zenkert D., “ Fatigue of Foam Core Sandwich Beams, Part 2: Damaged Specimens” International Journal of Fatigue, Vol. 19, No. 7, pp. 563-578, 1997.
[5] Zenkert D., An Introduction to Sandwich Construction, EMAS, Solihull, UK, 1995.
[6] ROHACELL®Data sheets - Rohm GmbH & Co.KG.
[7] Airex®Herex®Data sheets- ALCAN Airex AG.