如图9 左图所示, 传统机组在风轮和齿轮箱之间采用主轴传递动力并承受来自风轮大部分异常负荷,降低了齿轮损伤的风险。但这会延长机舱长度,增大机舱体积,在较小功率的机组上这种影响还不太明显。
随着功率的增大,主轴的直径和重量也与之递增,3MW 以上机组布置传动轴系时,又大又重的主轴成为机舱减重的目标,设计时倾向于采用直连方式。如图9 右图所示的结构那样,风轮通过一个承受三个方向载荷巨大的滚锥轴承挂在机座上,直接将动力传至齿轮装置。随之带来的难题是超大型双排滚锥轴承的研制和齿轮传动装置的高强度、高功率密度设计与制造、轴系动态边缘条件的设定等等,这些都应在确定采用“直连”方案之前找出行之有效的解决办法。
尽管直驱式风电机组具有简化传动结构的特点,在风力发电机组容量越来越向大型化发展的今天,过于庞大的低速发电机造成的运输、吊装难题,加上较高制造成本的条件限制,不得不回过头来思考如何减小机构的体积和重量以及降低成本的途径。适当运用齿轮增速或利用功率分流的方法是解决问题的思路之一。
在风轮和低速电机之间利用较小增速比的齿轮传动减小电机结构尺寸的所谓“半直驱”或“混合传动”类型的机组已有不少应用实例。图10 的传动形式是在风轮和电机之间增设了两级齿轮传动(一级行星和一级定轴齿轮传动)来提高电机的转速,使机组能够采用尺寸更小的永磁电机,取得更为紧凑的结构。
也可以采用功率分流的方法减小机舱体积。图11 所示的分流机型在国外已有应用。这个机组的风轮通过主轴上的大齿轮将功率等分传给四根中间轴,再通过四组齿轮增速传递至四个电机,这样就可以以小代大,既获得大电机的容量,又能够将机舱体积缩小。这种齿轮传动结构的难点是四个分流轴的均载问题,如能合理解决,不失为以小制胜的好方案。
齿轮箱主要零部件应具有足够的强度,能承受风力发电机组各种工况下的动、静载荷。齿轮箱上的动负荷取决于输入端(风轮)、输出端(发电机)的特性和主、从动部件(轴和联轴器)的质量、刚度和阻尼值、风力发电机组机舱的布置形式、控制和制动方式以及外部工作条件。
实际上齿轮箱不再作为孤立的个体,而是为整个传动系统的一个组成部分;传动系统的运
行可靠性也不再只是通过单独校核各部件的承载能力来表示,设计时愈来愈多地倾向于以整个传动系统的动态模拟结果为基础来考虑其运行可靠性。为此要建立整个机组的动态仿真模型,对启动、运行、空转、停机、正常启动、制动和紧急制动等各种工况进行模拟,针对不同的机型得出相应的动态功率曲线,利用专用的设计软件进行分析计算,求出零部
件的设计载荷并以此为依据,对齿轮箱主要零部件作强度计算。
在进行建模时要充分考虑以下因素:恶劣的环境条件(极端温度、湿度、沙尘、……)多变的风况(风向、风速、风暴、湍流……);频繁的启动和制动/ 停机和紧急停机, 前风轮和后电机突变载荷冲击;传动链动态设计和载荷分配;高功率密度、大速比增速传动的特点;零部件设计和材料特性要求;冷却、润滑条件;抗点蚀、抗疲劳损坏要求;噪声和振动;长寿命要求等等。
从建立简化的传动系统模型入手,模拟实际工况,分析载荷与各组成件的刚度的关系。运用有限元、断裂力学等工具计算系统的动态特性并分析各级模态振型和频率,从而改进传动链布置。采取措施减少齿轮传动误差,减少啮合力,优化的齿形参数,避开系统共振响应点。
载荷谱和极限载荷是齿轮箱的设计计算基础。载荷谱应当体现出齿轮箱在其设计使用寿命内的整个运行过程中所承受的所有负荷。包括安装地的正常运行负荷和由极限风速或三维湍流工况引起的最高运行负荷,以及由于突然调距或叶梢展开或机械制动等原因引起的瞬时峰值负荷。